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positions of the source: a= 1.5,&S, and 9. As follows from physical considerations, at the 
initial instant of time the pressure at the leading point is doubled. 

The dashed curves l-3 in Fig.3 represent the pressure distribution over the surface of 
the parabolic cylinder at times t = 0.6, 1.2, and 3. The source of the cylindrical wave is in 
the plane of symmetry and a= 2. The calculations were carried out using four terms of the 
expansion (1.27). 
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INHOMOGENEOUS ELASTIC STRUCTURES OPTIMAL IN STIFFNESS* 

L.V. PETUKHOV and K.E. SOKOV 

The problem of maximizing the stiffness (of minimizing the work of the 
external forces) of an elastic structure in which the shear modulus is 
the control or, in the two-dimensional case, the plate thickness /l-3/ is 
considered. Point-by-point and integral constraints are imposed on the 
control. Necessary Weierstrass-Erdmann conditions and Weierstrass 
conditions are obtained that enable qualitative deductions to be made 
about the optimal solution. These deductions do not agree with the 
results in /4/ in which, it is true, a problem of mathematical physics is 
examined. 

1. Forsmctation of the pobtem. Let RN be an N-dimensional Euclidean space of vectors 
x = zteei, where ei are the unit vectors of a Cartesian system of coordinates (here and 
everywhere henceforth the Latin subscripts i, i, k, 1, m, n run through values from 1 to N and 
summation from 1 to N is assumed over the repeated subscripts i,j,k, l,m,n in the products), 
8 is the projection domain in RN, and p is the boundary of 51. 

We will assume that the domain & can be filled by an elastic inhomogeneous material 
_~~ 
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characterized by the tensor of the elastic constants 8 (x) a, where 

t!l(x)EL,(Q), S B(x)dx = 8Dmes9,80 = const (1.1) 

0 9 e- .s e (x) G 8, (1.2) 
a = qjk,eiejekelr al01 = l-p 2py 6,jskl f P(6tk6fL + '%16jk) (1.3) 

in which p =I for N = 2 for the plane state of stress, q=2 forN=3 and A' = 3 

for the plane state of strain, and the shear modulus I_I and Poisson's ratio Y are fixed con- 

stants. 
Let us formulate the optimal design problem. Suppose we are given the vector of external 

forces F acting on the boundary rr and the section of the boundary r, on which the dis- 
placements of the elastic domain eqUal zero (rF 0 r, = @), while the remaining part of the 
boundary r is without a load, (7, O_, @+,v, IL. It is required to obtain 

i;f.l(u),.l= 1 F,u,dr (1.4) 
PF 

where F, E L, (rF), while u = uze, is the solution of the integral identity 

i 
2 (X) A (u, V) ds - 1 F,vi dr = 0, VV E 1’ (52) (1.5) 

FF 

V (Q) = (v = 7~, (x) e, 1 vi E WP’ (Q), 74 (Y) = 0, Y E r,) 
A (“Y VI = ai,kl%j (U) ekl (v) 

Ekl (u) = (auk/h, ‘+ au l/&k)/2 

ui are the displacements of the elastic domain, A (v, v) is the double specific potential 
elastic strain energy, and W,(1) (62) is the Sobolev space. It follows from (1.3) that the 
control in problem (1.4) is realized by the shear modulus 2 (x) or. of the material. The 
solution of the optimal design problem is a structure constructed from an inhomogeneous elastic 
material. The optimal control can be found by two methods: 

1) for two-dimensional problems the elastic layer thickness can be the control in the 
case of a plane state of stress, 

2) the optimal control obtained can be approximated by a material with piecewise-constant 
elastic characteristics. 

According to the kind of functional being minimized the problem is analogous to that 
examined in /4/. 

2. First variation. We will compile the expanded functional for which we append the left 
side of relationship (1.5) to the right side of equality (1.4) and assuming the optimal con- 
trol 8* (x) to be smooth, we find the first variation 

6~ = S Ft6ui dr + S [e*A (bu, v) + 6eA (u*, V)] dx 
rl? Q 

(2.1) 

where 83, 6u are variations of 
Then we obtain the inequality 

the control and the displacement vector. We set v= -u*. 

1 A&4 (U*, U*) dx Q 0 (2.2) 
R 

for M(x) satisfying the condition 

S6e(x)dx =o 
n 

from (1.5) and the necessary condition 6J > 0. 
The existence of a non-negative constant c*, such that 

A (n*, u*) = c*, Vx E Q, 

A (n*, u*) < t*, Vx E 8,; A (u*, u*) > L*, Yx E Q, 

(2.3) 

(2.4) 
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52, = {x E Q / f3* (x) = B_}, 8, = {x E n j e* (x) = 0,) 

follows from inequality (2.2) and equality (2.3). 
We will now assume that the optimal control e*(x) is a discontinuous function that 

undergoes a discontinuity on passing through the smooth surface F,, separating Q into two 
parts Q- and Q+. We will use the notation 

I u_(x), x E Q- u*= u+(x),xEB* 

The optimal solution u*(x) remains continuous on passing through r,; however the 
derivatives may undergo a discontinuity. 

We it’ItrOdUCe CUrVilitleaX orthogonal coordinates Tkr on the surface 1‘,,and let TN be a 
Cartesian coordinate orthogonal to lJa /5/. We will find the connection between the deriva- 
tives of u* on passing through rO. 

The equalities 

r,.'%- 11.. = r,=Vu* /r,, k = 1, _ . . . N - 1 

PX’(T (u-j jr* = PX’U (u*) Ir, {s = @a f-E (u)) 

follow from (2.1) and (2.51, where G is the stress tensor computed for the field of the 
displacements u, and rL are unit vectors associated with the curvilinear coordinates tk 

introduced (here and everywhere later the scalar and doubl.e scalar products are denoted by 
single and double dots /b/j. We will consider n, s(u), o(u) referred to the coordinates lk. 
Then the last equality in (2.6) can be written in the form 

@-(r~,a.r~).(r~*Vu-) = ~+(r~.a.rk).(r~.Vui) 

from which we obtain an expression for rN.cu- by taking account of the first two equalities 
(2.6), and we find the jump A (u*, u*) for the passage through IJ,, 

A (u-, u-) = Vu-. *a. . VU- = A (u+, u+) - (0- - e+) (B- -i_ fj+) (e-fj+)-ax (rN) (2.7) 

(the relationship (1.3) is taken into accaunt in the expression for X jr~)). The stress 
tensor components are here represented in the coordinates 7k. 

Analysis of relationships (2.7) shows that since X(r~)>0, we have 

A (n-an-)Ir,Q A (n+,n+) jr., 8- Ir, ;.J 8+,/r, (2.8) 

On the other hand, the inequality 

A (u-, u-j lr. :- A (u', n') IF*> tJ- Ir, '= 0+/r* (2.9 

follows from the necessary conditions (2.4). 
Comparing (2.8) and (2.9), we obtain that the jump in the control 0 on the smooth 

surface To is possible only in the case when 

r_?$.fF(u)(r* == 0, A (u-, u-) jr, = A (II+, u+,/r* = 5* (2.10) 

on this surface. 

3. Weierstrass's necessary condition. To obtain Weierstrass's necessary condition at 
the point x,E P we consider the simply-connected domain 3, that is stellar in x0? where 
G@&Q. We take the point Y E To (FO is the boundary of Q,) and we draw a vector r(y) 
to it from the point x0. If the set of points qr(y), is considered, then a boundary r0 (VI 
is obtained that extracts the domain Q,(n), where St, = &,f*), I'@ = r,(l). The domain fl% (rlf 
is obtained from &, by an q-fold change of all its linear dimensions, consequently 

mes fz, (VI) = $+ riles B. (3.l) 

We will assume that B* (x) is a piecewise-continuous optimal control, each continuous 
part of which is smooth. We take the point x,EQ, at which the continuity of e*(x) is 
not disturbed. We construct a domain O,(rl)r o<,<rl< %< 1, for x0 such that the function 

8' (XI is smooth therein. We give an arbitrary control 0 satisfying the inequalities (1.2) 

in Q,(n) and we give 8(x, q) in the domain 5L\ Q,(plf such that e(x, 0) = e*(x) and 



S hods+ S 3ds=O*rnesB 
Q\Q&n R(V) 

A0 = 8, - 6*, 0 (x, 0) = e* (x), x E Q, tq) 
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(3.2) 

It follows from (3.1) and (3.2) 

hEI=...= 6N-le = 0, SNe = 0 

Ae(x me9 &+ S PBdr = 0 
Q\W1l> 

(3.3) 

(3.4) 

We set up the extended functional 

I = J, + 3$, 1, = - s Aed (ll, u’) ax 
n\Qm 

I,=- S e.4(u,u*)de+ S F,(ui+ui*)dr 

ww rF 

It follows from (3.3) that 

6Js = . . . = P-J, ==O, PI, = -SGNBA(u*,u*)dx 
II 

The function u* is differentiable in the domain 9, (n), and consequently, by applying 
the formula 

to the integral Jr and using Ostrogradskii's formula, we obtain 

(3.5) 

where r is the external unit normal to the boundary r,(n) of the domain S&,(q) (it is 
also taken into account that v.0 (u*) = 0, x E 8, (n))* 

In the domain C~,(?)U(X,~)- n, and consequently, the first integral on the right-hand 
side of (3.5) is proportional to nN and the second to nN+r. Multiplying (3.4) by c* and 
combining with 6NJ = 6NJ, +&NI, 20, we find the inequality 

that is the necessary Weierstrass condition of a strong minimum. 
In order to use (3.61, it is necessary to have the solution u(x, tl) It is not possible 

to find it for arbitrary ~~(~), however, this solution can be found for elliptic, 
trochoidal, and ellipsoidal inclusions as 

bypo- 
q-+0. 

4. The necessary &&?rS~mss mmc%hm for an eltipse (N=2). Let 52, be an elliptic 
inclusion with semimajor and semiminor axes 
is at the point x0. 

q(ii-E) and rl(i-E),O,(E<i, whose centre 
of the tensor 0 = 

Q (n* (x0)) 
We will consider the principal stress cr, = ar(u* (x0)) 

to act at an angle p to the major semi-axis of the ellipse. The solution u (x. rl), 
on the left-hand side of condition (3.61 is identical with the solution of the compression- 
tension problem of an infinite plane with an elliptic inclusion by forces ~~(u*(x~)), @, (u* (xJ) 
acting at an angle p to the semimajor and semiminor axes of the ellipse at infinity as 
and is determined by the Kolosov-Muskhelishvili formula /7/ 

r1+O 

u = '/sn (X + 1) p-' (((1 -I- 8) @A, -A, - ZB,) cos cp - (1 - 

E) (x-h + A, - 28,) sin ‘pie, + I(1 -I- %I +A, + A, + 
2R,) eos ‘p - (1 - f) (%A, - A, f 2B,) sin cpl e, 

A, = {(u% + ez) I(% -i- 1) e* + (1 - Ea) Aei -i- 2 (cl - 

UJ 5Ae cos 2@} R-’ 

(4.1) 
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2(0, --%)AQsi~38 
" = - (X+l)6*[9*+x(98+ Ad)+AB~*j 

8 = --{('Jr + %)(x - 1) SAe + (01 - us) [(x + 1) 0* + ZAO] cos 2g} R-1 

BZ = (01 - %) [(x + 1) 0* + (x -I- E") 1181-r sin 28 

where 'p is the angle measured from the zI axis x = 3 -44~ for the plane state of strain 
and x = (3 -v)(1 + v)-' for the plane state of stress. 

Substituting the function u*, expression (4.1) and r = [(I - E) cos 'pe, + (1 + E) sin ‘pe,l/Q, 

dr = qQdcp, Q =z 1/l - 2E cos 29 -I- E2 in the left-hand side of condition (3.6), and after 
reduction we obtain 

Ae (1 - E”) I’/, (x + 1) (pe*)-lY (j3, E, Ae) + 5*1 2 0 

$ @, %, Ae) = {((rl + u,)? (x - 1) A8%8 - 4 (cl” - uz”) (x - 

I) %Ae cam 2g - 2 ((Jo - (5_,)3 [(x + I) e* + 2Aei 00~2 ag + 

(Is1 + u?)* (x - 1) I(x + 1) e* + xAel} R-1 - 

2 (ox - u,)*Ae sin 2g I(x $ 1) e* + (x + 5”) Ael-1 

R = [lx i- I) e*i* + (x. + 1) cx i 2 - 5’) e*Ae + 3% (1 - Es) (Ae)? 

(4.2) 

(for the ellipse mesQo = n(l - E')). 

Inequality (4.2) should be satisfied for any BE LO,%) and consequently, by setting 
(TX? > uz* , to be more specific, and solving the problem of minimizing the left-hand side of 
inequality (4.2) for O,<p<n, we obtain 

B* = 0, Y* (E, Ae) = Y (0, 5, Ae) = ((01 + U?)2 (x - 1) [(x + 

i)e* + (X - %*) Ael + 4 (~~2 - ~~2) (X - i) %Ae + 
2 (Us - GJ~(~ + I) e* + 2Aeij ~-1 

Appending the component A (u*, u*)- d (II*, U*) to the expression in square brackets on 
the left-hand side of inequality (4.2), we find after reduction 

(y;s(($$) (cu, i u2)z lx - 1) 1(X + 1) e* -;- x (1 - :*I Ael - 

2 (u12_u~~)(x~ - 1)c6* + (ul - u2)2[(X + I)(% - %ye* + 2x(1- %?AeI} t- 

A > 0, A = (1 - E”) Ae [<* - A (u*, u*u 

(4.3) 

It follows from the necessary conditions (2.4) that A > 0, the factor in front of the 
braces in (4.3) is also non-negative, and consequently the expression in the braces will be 

negative for 

A@ < j (E), f (5) = 4-l (1 - E’)_’ 19 (x - 1) - 27 (x - 1) 5 + (x - EZ)l @ 

0 = (% + 1) 19 (% - i) + we*, 7 = (aI -t (ip)ml - ~5) 

Maximizing f(%) in the segment O,< E< 1, we find 

-(x-l)-‘o,~*=7,-11uo,~ul~o 
f*=f(%Y= 1 _ - [ x1 .C~(X-~)+f]0,:*=7-~,0~u2/u1~~ (4.4) 

The same relationship between the axes of the ellipse was obtained in /8/. Analysis 
shows that, for all possible values of clrcZ and Y, negative values of the expression in 

the braces in inequality (4.3) are possible for 

Ae < f, < -e* (4.5) 

Taking (1.2) into account we obtain 

e_ - e* G m Q 0, - e* 

from which and from (4.5) it follows that the expression in the braces in (4.3) is non-negative 
for any allowable A6 and any ur, us. Therefore, the necessary Weierstrass condition for an 

elliptic inclusion is always satisfied. 
The Weierstrass condition may be violated in the problem of a minimum of the electrical 

resistance of a plane domain /4/, where the worst case of an inclusion is an ellipse degener- 

ating into a slot. An analogous deduction about the impossibility of sliding modes /9/ holds 
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in the problem of maximizing the plate stiffness. 
In conclusion, we note that the Weierstrass-Erdmann condition for the stiffness minimiz- 

ation problem will be satisfied on discontinuities of 8*(x) while the Weierstrass condition 
will not be satified at points x-in which 0-G 8*(x)<8+. 
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ON THE STATE OF STRESS AND STRAIN NEAR CONE API&ES* 

N.V. MOVCHAN and S.A. NAZAROV 

The asymptotic form of the state of stress and strain near the apices of 
inclusions or cavities having the form of a pointed cone is investigated. 
An arbitrary simple closed contour in a plane bounding a set gs of a 
small parameter e is the directrix of the conical surface. The principal 
term of the asymptotic form dA,+0(e3) of the stress singularity index is 
calculated and examples are considered. The problem of the axisymmetric 
strain of an elastic half-space with a thin conical recess is 
investigated. 

2. A pointed corn&t inclusion and recess. Let k, denote a thin cone 
E-‘Z3-‘X’ E g, X’ = (z,, x2)), where E is a small positive parameter, and g 

{E E I%$: r3> 0, 
is a domain in the 

plane bounded by a simple smooth contour $g. We will consider the cones le, and & = R3\,ke 
filled with elastic isotropic materials with Lame constants h",p" and h 
and the material contact is ideal (without peeling and slippage). 

, p, respectively, 
It is known that the 

behaviour of the state of stress and strain near a conical point Ois governed by the eigen- 
numbers and vectors of a certain eigenvalue problem in the domain cut out of the cone by a 
unit sphere S. We introduce spherical coordinates (p, 0, cp), where p = IX I, 0 E lo, 3-d is 
the latitude, g, E ro, 23 
matrix operator of the Lame 

is the longitude, and P-?Q (8, v, pd iap, ~/~8,~/~~) will denote the 
system. We write the stress vector normal to the surface 

in an analogous form p-rP (e, rp, pB/Bp, a/se, a/+)~. 
a& 

Here u is the displacement vector. (To 
abbreviate the notation, the arguments 8, cp and ai%, atarp will not be indicated everywhere 
later.). Let gee be the set cut out by the cone k8 on the sphere S, 
complex spectrum parameter h(e) has the form 

The problem with the 

0 (A (e)) v = 0 on S \ gee WI 


